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Depletion of the Outer Asteroid Belt

Jer-Chyi Liou* and Renu Malhotra

During the early history of the solar system, it is likely that the outer planets changed their
distance from the sun, and hence, their influence on the asteroid belt evolved with time.

The gravitational influence of Jupiter and Saturn on the orbital evolution of asteroids in

the outer asteroid belt was calculated. The results show that the sweeping of mean
motion resonances associated with planetary migration efficiently destabilizes orbits in
the outer asteroid belt on a time scale of 10 million years. This mechanism provides an

explanation for the observed depletion of asteroids in that region.

Asteroids are small, rocky bodies less than

1000 km in diameter that lie between the

orbits of Mars and Jupiter in the region

traditionally called the asteroid belt. The

outer asteroid belt, from 3 to 5 astronomical

units (AU) from the sun, is nonuniform and

depleted of asteroids. The orbital eccentric-

ities and inclinations, as functions of semi-
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major axes, of 7100 numbered asteroids ( 1)

(Fig. 1) show four major features: (i) a lack
of asteroids in the 1: 2 interior mean morion

resonance (MMR) (2) with Jupiter cen-

tered at 3.28 AU, (ii) a lack of asteroids

between 3.5 and 3.9 AU, (iii) a concentra-

tion of asteroids in the 2:3 interior MMR

with Jupiter centered at 3.97 AU, and (iv)

a lack of asteroids beyond the 2:3 interior
MMR.

The "gravitational hypothesis" (3) pos-
tulates that the gravitational forces of the

planets are responsible for shaping the as-

teroid belt. This hypothesis has explained
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gaps at the l:_, and 1:2 interior MMR

locations and the depletion beyond the 2:3

interior MMR (4-6). However, recent nu-

merical simulations of the solar system for a

period of l billion years based on this hy-

pothesis have failed to reproduce the ob-
served lack of asteroids between 3.5 and L9

AU, prompting the conjecture that this

feature may be related to the distribution of

asteroids at the end t)f planetary formation

or to other nongravitational processes (7,

8). Here we consider the planet migrati_m

hypothesis that has been invoked for sever-

a[ outer solar system problems (9, 10).

[)tiring the earb; history of the solar sys-

tem, it is likely that gravitational scattering of

planetesimals by giant planets caused the or-

bits of Saturn, Uranus, and Neptune to nil-

grate ot,tward and the orbit of Jupiter to mi-

grate inward (l 1). This dynamical process, if
it occurred, would explain the peculiar orbit

of Pluto and the capture of Kuiper Belt objects

in MMRs with Neptune (9, I0). The migra-

tion of the giant planets would also have
affected the evolution of the main belt aster-

oids and may have been responsible for some

of the hitherto unsolved mysteries of the ob-

served structure of the asteroid belt (9). We

numerically calculated the orbital evolution

of 200 test asteroids initialh/in near-circular,

low-inclination orbits m the outer asteroid

belt under the perturbing forces of Jupiter and

Saturn--when the planets are in their current

orbits and when they are in radial migra-

tion-to determine hmv planetary migration

would have affected the asteroid distribution.

We used two numerical integration meth-

ods: an implicit Runge-Kutta integrator with a

self-adjusting step-size control (RADAU)

(12) and a modified mixed-variable quasi-

symplectic mapping (13). RAI)AU handles
close encounters between a test asteroid and a

planet accurately, but its slow calculation

speed makes it impractical for a systematic

study of the ew4ution of a large number of

asteroids over 10 million years. The mapping

method is at least one order of magnitude

faster than RADAU, so it is suitable fi)r study-

ing the long-term evolution of test asteroids;

however, it is not accurate for close encoun-

ters, so we terminated the integration of any

asteroid that had a close encounter with any

planet (14) and presumed that it had been
removed from the asteroid population. We

compared the results of simulations using both

integrators fi)r integration times less than 10

million years and found that, statistically,

both integrators gave the same results. For

integrations longer than 10 million years, we

used only the mapping integrator.
We modeled the migration of a planet by

applying a fi_rce opposite to (or along) its
orbital velocity vector such that it migrated

radially inward (or outward) over time. We

included two planets in our simulations: Jupi-

ter with a 0.2-AU inward migration and Sat-

urn with a 0.8-AU outward migration. We

used two migration schemes: (i) a linear mi-

gration, wherein the p[anetar3' semimajor axes

changed linearly with time, and (ii) an expo-

nential migration, wherein the rates of change

of planetary semimajor axes decayed expo-

nentially with time, with migration time

scales ranging from 1 million to 10 million

years. The total integration times ranged from
1 million to 100 million years. Hundreds of

test asteroids were initially placed between 3.2

and 4.2 AU. Their initial orbital eccentrici-

ties and inclinations were randomly chosen

between 0 and 0.1 and between 0 ° and 6° ,

respectively. Their initial longitudes of as-

cending node, longitudes of pericenter, and

mean longitudes were all randomly chosen
between 0° and 360 °. Once the initial condi-

tions of test asteroids and planets were set up,

their equations of motion were numerically

integrated. In our calculations, the planets

fidly interacted with each other and acted on
test asteroids, whereas the test asteroids did

not affect the motions of planets.

Our simulation with no planet migration

(Fig. 2B) is consistent with previous work:

(i) most asteroids at the 1 : 2 interior MMR

were depleted (5), (ii) asteroids at the 2:3

interior MMR were maintained in stable

resonance, (iii) asteroids outside 4 AU were

removed by close encounters with Jupiter

(6), and (ix,) the depletion of asteroids be-

tween 3.5 and 3.9 AU was only about 50%

(7). The latter depletion fraction did not

increase even with a 10-fold longer integra-

tion of 1 billion years (8). On the other

hand, in our simulations with planetary mi-

gration, the orbital migration of giant plan-
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Fig. 1. Distribution of the observed asteroids be-
tween 2 and 5.4 AU on the basis of their orbital

eccentricities (A) and inclinations (B) as functions
of semimalor axes. The gaps and concentrations
of asteroids are associated with the mean motion
resonances with Jupiter. The locations of four of
them--l:3, 1:2, 2:3, and 1:l--are shown by
dashed lines in (A).

ets produced an efficient depletion in the

region between 3.5 and 3.9 AU on millikan-

year time scales (Fig. 2, C through E). Th_

linear and exponential migration silnula-

tions gave similar results. They also indicate

that the slower the planets migrate, tht

more efficient the depletion is.

Planet migration increased the efficienc_

of depletion of asteroids in this particula_

region because the depletion was caused b_

the sweeping of MlVlRs through the region a_

Jupiter migrated inward. It has been showr

recently that, in the current planetary c,n

figuration, asteroid._ at the 4:7, 3:5, and 5:_"

interior MMRs with Jupiter (located al

3.58, 3.70, and 3.80 AU, respectively) art

unstable over million-year time scales (8

15). The orbit of an asteroid in one of thost

three resonances is highb/chaotic: An ini

tially circular orbit at these resonances wil

have its orbital eccentricity pumped up in ;_

short period of time; eventually its orbi_

crosses that of Jupiter, and close encounter-

with the planet relnove it from that region

It is these three NtMRs that provide th_

50°8, depletion ¢_f asteroids from the oute,
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Fig. 2. (A) Distribution of the observed numbere
asteroids. The locations of the 1:2, 4:7, 3:5, 5:_
and 2:3 interior MMRs are labeled by the bold lin
segments at the top. (B) Distribution of 200 test a_
teroids after 1O0million years of numerical simulatio
in a sun-Jupiter-Saturn-asteroids system [adapte,
from (16)]. Jupiter and Saturn are interacting 'wit:
each other with no radial migration. The dotted lit
indicates the initial distribution of the test asteroid:
The 1:2 gap was formed after 10 million years. AboL
50% of the original asteroids still remained betwee,
3.5 and 3.9 AU at the end of the simulation. (C), (D
and (El show results from three different numeric, i
simulations of sun-Jupiter-Saturn-asteroids systerr :
in which Jupiter migrated inward while Saturn IT
grated outward linearly with time for 1, 2, and :
million years, respectively. Simulations with exp_
nential migration gave similar results.
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beltin theclassicalcase(noplanetmigra-
tion).Whenthemigrationofgiantplanets
isincludedor,morespecifically,whenthe
inwardmigrationof Jupiteris included,
thosethreeresonancessweepthroughthe
regionbetween3.5and3.9AU.Asteroids
originallynotinanyresonancesencounter
thoseMMRsandgetcaptured,andtheir
orbitsbecomechaotic(Fig.3). It is this
resonance-sweepingmechanismthat de-
pletesasteroidsfromtheouterbelt.

We alsoconsideredtheeffectof this
mechanismonotherpartsoftheasteroidbelt.
Asteroidsoutside4AUwereremoved,where-
asasteroidsweremaintainedinthe2:3inte-
riorMMRat 3.97AU (Fig.2),consistent
withtheobservedasteroiddistribution.How-
ever,inoursimulations,asteroidswerecap-
turedandmaintainedin the 1:2 interior
MMRat3.28AU,contrarytotheobserved
gapatthislocation.A plausibleexplanation
forthisdeficiencyisthetimescaleofinsta-
bilityforasteroidsin thatresonance.In the
classicalcase(noplanetmigration),thetime
scaletoclearthe1:2gapisontheorderof10
millionyears(5,16). A hint of this long-term
effect is evident in Fig. 2E and is more obvious
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Fig. 3. Evolution of an asteroid in a sun-Jupiter-
Saturn-asteroid system. The planetary migration
time is 2 million years. (A) Semimajor axis of the
test asteroid normalized to the semimajor axis of
Jupiter. Three horizontal lines show the locations
of the 5: 8, 3: 5, and 4:7 interior MMRs. As Jupiter
migrated inward, the relative semimajor axis of the
asteroid increased, This test asteroid was initially
not in any MMR with Jupiter; however, the inward
motion of Jupiter caused the 3:5 interior MMR to
sweep by and capture this asteroid into reso-
nance at 1.1 million years, The eccentricity (B) and
inclination (C) of the asteroid varied irregularly
when it was in resonance, Finally, its eccentricity
increased to such an extent that it began to cross
the orbit of Jupiter, and subsequent close en-

counters with the giant planet finally made its orbit
hyperbolic and removed it from the outer belt.

in Fig. 2B. We conclude that the asteroids at

the 1:2 interior MMR were removed by the

long-term perturbations of the planets after

planet migration ceased (17).
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